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Reaction kinetics of annihilating particles with anomalous diffusion
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We present numerical simulations of the effect of anomalous diffusion on the binary annihilation
reaction model A + A — 0. Anomalous diffusion is simulated by discrete-time Lévy flights, which
facilitate the numerical treatment of that transport mechanism and makes it possible to cover a
wide range of Lévy exponents. Results are compared with those of continuous-time approaches,

both theoretical and numerical.

PACS number(s): 05.40.+j, 82.20.—w

Anomalous diffusion plays a fundamental role as a
transport model in a wide class of physical systems [1].
Diffusion in turbulent flows [2], phase-space motion in
chaotic dynamics [3], and transport in highly hetereoge-
neous media, such as porous materials or gels [1,4], are
the main instances of those systems.

Ordinary diffusion is characterized by a mean square
displacement proportional to the time, (r?) oc t. On
the contrary, depending on the physical system under
study, anomalous diffusion can exhibit a variety of al-
ternative behaviors, ranging from generalized diffusion
laws, (r?) o t? (B # 1), to situations in which (r?) is
not a well defined quantity. In these cases, the transport
mechanism has to be characterized in terms of other sta-
tistical properties. These anomalies are related with un-
usual topological features in the transport process, such
as fractal structure [2,5].

In the framework of random walks, two possible ap-
proaches can be used to reproduce anomalous diffu-
sion. One of them considers long-tailed waiting-time
distributions in the continuous-time formulation [4,6,7].
The other one, which can be incorporated to discrete-
time models, takes long-tailed distributions for the jump-
length probability [8]. Both approaches can be combined
to account for complex scaling laws, as in turbulence
problems [2]. Among the discrete-time random walks
with long-tailed jump distributions, Lévy flights [9,1-6]
are paradigmatic. In Lévy flights, the jump probability
distributions p(z) behave as

p(z) ~ || 7177 (v > 0), (1)

for large z. For v < 2 the mean square displacement (z2)
diverges, and the resulting diffusion process is anomalous.
In particular, if «v is lower than the Euclidean dimension
of the domain where the random walk takes place, the set
of points visited by the walker is a fractal of dimension
v [3,5]. In this case, the elapsed time—which is pro-
portional to the number of steps—scales with the total
displacement r as t ~ 7.

The interplay of transport and reaction processes has
attracted great attention in recent years [10]. Besides its
obvious interest in practical applications, the combined
effect of reactions and ordinary diffusion has been stud-
ied as a model of complex behavior not only in physical
and chemical systems but also in biology [11] and other

1063-651X/95/51(6)/6258(3)/$06.00 51

fields of science. In particular, it is known [12] that ordi-
nary diffusion is able to affect in a nontrivial manner the
kinetics of some simple reactions such as, for instance,
one-species binary annihilation, A+ A — @, and coagula-
tion A+ A — A. In these cases, the asymptotic long-time
decay of the particle number in the presence of diffusion
is
t=4/2 d <2
ne ~{ 0 45s ®)

on a d-dimensional space.

In view of the relevant role of anomalous diffusion
as a transport mechanism in several physical systems,
it is natural to investigate its effects on reaction pro-
cesses. This has been partially solved in the frame of
continuous-time random walks (“Lévy walks”) in Ref.
[7]. In this paper we present some preliminary numer-
ical results on the effect of anomalous diffusion in the
reaction A+ A — @—considered only marginally in [7]—
in a discrete- time scheme. At the computational level,
discrete-time random walks are much easier to manipu-
late than their continuous-time version. Therefore, they
provide a more convenient tool for large-range simula-
tion of anomalous diffusion. In particular, whereas in
Ref. [7] the Lévy exponent 7 it is restricted to the inter-
val 1 < v < 2, we consider here that in our Lévy flights
it can vary in some orders of magnitude.

We consider a system of particles undergoing the re-
action A + A — (. The particles perform a Lévy-type
random walk on a one-dimensional lattice with periodic
boundary conditions. At each time step, one particle
is chosen at random. It jumps to the right or to the
left with equal probability. The jump-length probability
P(n) satisfies Eq. (1):

P(n) = N(no +n)"*"" (n=0,1,2,...), (3)

where N is a normalization constant. Here, ng is a typical
length which, in the case of a fractal random walk, stands
for the lowest scale at which self similarity manifests. In
our numerical simulations we take ng = 1. The particle
then jumps n sites to the right or to the left; if the arrival
site was occupied, both particles are removed.

For small values of v, 1 2 v, we expect that the particle
number decay as predicted by the “mean field” chemical-
kinetics theory, n(t) ~ t~1, which does not take into
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FIG. 1. The number of particles as a function of time for
single realizations of the binary annihilation A + A — @ over
a 4.8 x 10°-site lattice, for three values of the exponent ~.
Straight lines stand for the power-law decays corresponding
to ordinary diffusion (¢7'/2) and to the “mean field” theory

(™).

account fluctuations in the particle distribution due to
diffusion. In fact, for sufficiently small ~y, the Lévy flight
is a highly efficient transport mechanism with divergent
mean jump length. In these conditions, the reacting par-
ticles are subject to a strong stirring process and the spa-
tially homogeneous chemical-kinetics result should hold.
On the other hand, for v > 2, the second moment of the
jump distribution in Eq. (3) does exist, the mean square
jump length is therefore well defined, and the reaction
kinetics observed with ordinary diffusion, n(t) ~ ¢~/
should be recovered.

For intermediate values of the exponent v, we assume
that the long-time decay of the particle number will be
given by n(t) ~ t*, with -1 < a < —1/2 [7]. This
hypothesis must be confirmed by numerical simulations,
which will be also used to determine the dependence of
the exponent a on 7. In Fig. 1, we show the result of
simulations on a 4.8 x 10%-site lattice, with one particle
per site at t = 0. Each set of points corresponds to
one realization for a given value of 4. For v = 0.5, the
asymptotic slope in this log-log plot is clearly close to a =
—1. Meanwhile, for v = 4.0, n(t) seems to decay a little
faster than the expected t~1/2 law of ordinary diffusion.
For the intermediate value v = 1.5 it is apparent that the
slope a results as well defined as for the other cases. A
least-square fitting for ¢ > 1000 produces o =~ —0.70.

Simulations show that other values of vy give also place
to reaction kinetics with well defined power-law decays
for the particle number. Figure 2 displays the slope «
versus the exponent 7, as obtained from the numerical
evaluation of n(t). As predicted before, for v < 1 the
slope is close to @ = —1. We recall that these values of
~ produce a fractal random walk, with divergent mean
displacement. The “mean field” result is essentially valid,
although a deviation is neatly seen near v = 1, where
ax —0.9.

The strongest variation of a as a function of v occurs
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FIG. 2. The power-law “slope” «a as a function of the ex-
ponent . Note the logarithmic scale in the horizontal axis.

for 1 < v < 2. In this interval, the random walk passes
from having an infinite mean jump length to having a well
defined mean square displacement, which should produce
ordinary diffusion. Accordingly, within this range the
slope a practically varies from one of its extreme values
to the other. For v = 2, we find a = —0.6.

We observe that, although for v > 2 the mean square
jump length (n2?) of our Lévy flight is finite, higher order
moments can diverge. In fact, (n') is infinite for T' > 7.
According to our results, these anomalies in the high-
order moments of the jump distribution seem to affect
the reaction kinetics. In fact, a reaches the value which
corresponds to ordinary diffusion only for large v, v 2 10.
Just above v = 2 the evolution of the particle number
differs slightly from the expected t=1/2 law.

The solid line in Fig. 2 stands for an approximated re-
sult for 1 < v < 2 based in the analysis of interparticle
distances [7], which gives @« = —1/y. From our simu-
lations we see that this is a reasonable approximation,
although a systematic difference is observed.

In summary, discrete-time anomalous diffusion seems
to affect simple reaction models in the same way as
continuous-time Lévy walks, i.e., by modifying the
power-law decay of the particle number. Some slight
anomalies are found with respect to the expected the-
oretical results, in particular, in the limit of ordinary
diffusion. A formal treatment of the interplay of anoma-
lous diffusion and reactions could be carried out within
the formalism presented in Ref. [13]. In fact, it has been
proved to efficiently deal with the anomalies which typi-
cally arise in this class of problems. Such a treatment is
the subject of work in progress.
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